
Lecture 17 - 3/19/2024
----------------------
We went over the Comparable interface again in order to properly
understand it in the context of our AudioBook example.

To refresh, the following is the method header for the compareTo
method when dealing with AudioBooks:

public int compareTo(AudioBook other)

We need to provide an implementation for the compareTo method
whenever we implement the Comparable interface. To implement the
Comparable interface we need to include the following in our
class header:

implements Comparable<AudioBook>

If you were implementing this for another class then you would
replace AudioBook with whatever class you are implementing it
for. When it comes to implementing the compareTo method it is
convention to return 1 when the calling object comes after the
argument, 0 if it is equivalent, and -1 when the calling object
comes before the argument. A proper call to compareTo with two
AudioBook objects a and b would look like:

a.compareTo(b)
OR

b.compareTo(a)

The specific order you do it in makes a difference in how to
interpret your results. As mentioned in lecture, you need not
bind yourself to previously mentioned convention but you DO need
to bind yourself to the convention of positive, negative, and
zero for their respective cases above.

Moving on from this we discussed ArrayLists in Java, these are
more similar to lists in a language like Python. ArrayLists are
still homogeneous collections of items but unlike arrays they
are not fixed in length. The length of an ArrayList is always
just enough for us to make use of. In order to make use of



ArrayLists in Java is we need to import them from the util
package as follows:

import java.util.ArrayList;

To instantiate a new ArrayList we do it in one of the following
ways:

ArrayList<ClassName> variableName = new ArrayList<ClassName>();

OR

ArrayList<ClassName> variableName = new ArrayList<>();

Two key things to note about this:

1. The second usage of ClassName is optional
2. You cannot make an ArrayList of primitives; you must use

their wrapper object types instead.

Here are the wrapper types for all the primitive types:

1. Integer
2. Double
3. Character
4. Byte
5. Short
6. Long
7. Float
8. Boolean

Fortunately Java doesn’t make this your problem as both of the
following are valid:

int x = IntegerArrayList.get(0);
Integer x = IntegerArrayList.get(0);

Doing the former would suggest that Java unwraps the primitive
from the wrapper type. Which is exactly what it does, and it



goes both ways; you do not need to explicitly make Integer
objects to add them to the ArrayList.

When working with ArrayLists there are a few key methods that
you should be aware of:

1. get(int index) - returns the item at position index
2. set(int index, T value) - replaces the item at position

index with the specified value
3. add(T value) - insert value to the end of the list
4. add(int index, T value) - insert value at position index

shifts the rest to the right by 1
5. remove(int index) - remove the item at position index
6. remove(T value) - remove the first instance of value
7. size() - returns how many elements are in the ArrayList


